INKJET METROLOGY AND STANDARDS FOR ION MOBILITY SPECTROMETRY

Mike Verkouteren, Bob Fletcher, Jacqueline Brazin, Eric Windsor, Marcela Najarro, Rhyan Maditz, Wayne Smith, Jennifer Verkouteren, and Greg Gillen

Surface and Microanalysis Science Division
National Institute of Standards and Technology
Gaithersburg, MD 20899 USA
Types of Standards

- **Standard materials**
 - chemical, physical, optical, etc
 - certified reference materials (SRM)
 - testbed (RM, IM, TM)

- **Standard data**
 - chemical, physical, optical, etc
 - certified reference data (SRD)
 - interactive (RD, MTD)

- **Calibration services**

- **Documentary standards**
 - performance or design
 - voluntary or regulatory
Trace Contraband Detection Using Ion Mobility Spectrometry

Vapor-based detection

Swipe-based residue detection

Portal-based particle detection

Ion Mobility Spectrometer

Explosives Detection
TNT Standard ALM00632

ISIMS-2006 O‘ahu
Metrological Issues

- Massive deployment of IMS detectors
- Diversity of applied technologies
- Metrics of reliability & comparison of performance
- Consensus for technical improvements
- Prioritization of R&D
- Liability
“Inkjet” Technology for Trace Contraband Metrology

Advantages

• Dispenses small quantities (picoliter-sized droplets, femtograms of analytes)
• High precision delivery
• Dynamic range (6+ orders of magnitude)
• Digital programmability
• Fieldability
Microdroplet Formation

Sheath

Piezo-ceramic

Fluid reservoir → Glass nozzle

Cavity

Voltage (+) applied

Droplet Volume & Velocity Trends

Pulse width (microseconds)

Droplet Velocity (m/s)

N-butyl carbitol at 2000 Hz

Droplet volume (m³)

Pulse amplitude (volts)

N-butyl carbitol at 2000 Hz

Movie

MicroFab Technologies, Inc.

ISIMS-2006 O‘ahu
Piezoelectric Microdispensing

Technical Factors

Fluid factors
• Thermodynamics (viscosity, specific gravity, surface tension, vapor saturation pressure, heat capacity, boiling point), solute concentration, particles

Nozzle factors
• Piezoelectric waveform, cavity & orifice dimensions (droplet size, resonance limits: drop-on-demand), wettability (jet direction), fluid back pressure

Post-injection factors
• Ambient media & flow rate, target surface characteristics (temperature, conformation, roughness)
Outline

• Microdispensing systems

- Arrays
- Particles
- Spheres
- Vapors

• IMS measurements
Quant-Jet
(MicroFab Technologies JetLab III)

- 2-D arrays & patterns
- IMs and TMs
- Verification
 - Optical
 - Microanalysis
 - IMS
 - Classical methods

C4 + fluorescein on PTFE
IMS Intercomparison Reference Material
Thermal Desorption
Analyte Position Factor on Sample Trap

- Aliquots of RDX solution placed on traps within virtual grid
- IMS measurements performed and replicated
- IMS response dependent on grid position
- Asymmetries indicated
Thermochromic Inks

- Formulated for drop-on-demand inkjet printing
- Color change at specified temperature
 - Desorption temperature profile
 - Misuse of printed standard materials
Thermochromic Indicator of Desorption Isotherm

PTFE swipe in Barringer IonScan 400B

Before desorption

After desorption, 200 ºC for 10 seconds
Polymer Microsphere Formation using Emulsion/Solvent Extraction Printing

“Sphere-Jet”

Pharmaceutical delivery technology applied to generation of IMS particle standards

• Non-toxic
• Biodegradable
• Monodisperse
Polylactic-glycolic Acid (PLGA) – TNT Microspheres
PLGA Microspheres containing Butylated Hydroxytoluene (BHT)
Particle-Jet

SEM Images of SEMTEX Particles

~5 μm

1800x

500x
Vapor-Jet

- Trace vapors of explosives, CWA simulants, odor signatures
- Calibration of vapor detectors
- Sets performance targets of next generation vapor detection technologies

movie
Vapor-Jet Performance

Microdroplet diameter = 58.4 micrometers
Air flow = 10 L/m
Photoionization Measurements
Isobutanol

PID response (ppm)

Time Sequence (mm:ss.s)
PID Results for 3 Fluids

- Ethyl-2-hexanol
- Isobutanol
- Methyl salicylate
Thermodynamics of Trace Solute Evaporation

Maximum Evaporative Mass Flux

\[\Gamma = \frac{(m \cdot p_s)}{(2 \cdot \pi \cdot m \cdot k_B \cdot T)^{1/2}} \]

Mass Injection Rate

\[\Lambda = C \cdot \nu \cdot I \]

Table II. Coefficients for the Reduced Clausius-Clapeyron Equation (Eq. 2), and Calculated Evaporation and Injection Rates.

<table>
<thead>
<tr>
<th>Compound (^{10})</th>
<th>(\alpha (K^{-1}))</th>
<th>(\beta)</th>
<th>(\Gamma_{130°C} \times \text{Area}^*) (ng/s)</th>
<th>(\Lambda_{\text{max}}) (ng/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RDX</td>
<td>-6473</td>
<td>16.50</td>
<td>2.5</td>
<td>1.0 (^{†})</td>
</tr>
<tr>
<td>PETN</td>
<td>-7243</td>
<td>19.56</td>
<td>42</td>
<td>4.2 (^{‡})</td>
</tr>
<tr>
<td>TNT</td>
<td>-5481</td>
<td>16.37</td>
<td>550</td>
<td>4.2 (^{‡})</td>
</tr>
</tbody>
</table>

*K Droplet impingement area = 2700 \(\mu m^2\)
IMS Calibration Curves

GE Security VaporTracer 2
Single Vapor Mode w/ Preconcentrator
RDX, TNT, PETN
Summary

- Quant-Jet ... Printed Swipe Standards (IMs, TMs)
- Vapor-Jet ... Vapor Standards (Calibrations)
- Sphere-Jet & Particle-Jet... Portal Standards (TMs)